6,208 research outputs found

    The origin of the phase separation in partially deuterated κ\kappa-(ET)2_2Cu[N(CN)2_2]Br studied by infrared magneto-optical imaging spectroscopy

    Full text link
    The direct observation of the phase separation between the metallic and insulating states of 75 %-deuterated κ\kappa-(ET)2_2Cu[N(CN)2_2]Br (d33d33) using infrared magneto-optical imaging spectroscopy is reported, as well as the associated temperature, cooling rate, and magnetic field dependencies of the separation. The distribution of the center of spectral weight () of d33d33 did not change under any of the conditions in which data were taken and was wider than that of the non-deuterated material. This result indicates that the inhomogenity of the sample itself is important as part of the origin of the metal - insulator phase separation.Comment: 4 pages, 3 figures, accepted for publication in Solid State Commu

    N=2 Supersymmetric Model with Dirac-Kahler Fermions from Generalized Gauge Theory in Two Dimensions

    Full text link
    We investigate the generalized gauge theory which has been proposed previously and show that in two dimensions the instanton gauge fixing of the generalized topological Yang-Mills action leads to a twisted N=2 supersymmetric action. We have found that the R-symmetry of N=2 supersymmetry can be identified with the flavour symmetry of Dirac-Kahler fermion formulation. Thus the procedure of twist allows topological ghost fields to be interpreted as the Dirac-Kahler matter fermions.Comment: 22 pages, LaTe

    Incommensurate Mott Insulator in One-Dimensional Electron Systems close to Quarter Filling

    Full text link
    A possibility of a metal-insulator transition in molecular conductors has been studied for systems composed of donor molecules and fully ionized anions with an incommensurate ratio close to 2:1 based on a one-dimensional extended Hubbard model, where the donor carriers are slightly deviated from quarter filling and under an incommensurate periodic potential from the anions. By use of the renormalization group method, interplay between commensurability energy on the donor lattice and that from the anion potential has been studied and it has been found that an "incommensurate Mott insulator" can be generated. This theoretical finding will explain the metal-insulator transition observed in (MDT-TS)(AuI2_2)0.441_{0.441}.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at December 24 200

    Substitution Effect by Deuterated Donors on Superconductivity in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Full text link
    We investigate the superconductivity in the deuterated BEDT-TTF molecular substitution system κ\kappa-[(h8-BEDT-TTF)1−x_{1-x}(d8-BEDT-TTF)x_x]2_2Cu[N(CN)2_2]Br, where h8 and d8 denote fully hydrogenated and deuterated molecules, respectively. Systematic and wide range (xx = 0 -- 1) substitution can control chemical pressure finely near the Mott boundary, which results in the modification of the superconductivity. After cooling slowly, the increase of TcT_{\textrm{c}} observed up to x∼x \sim 0.1 is evidently caused by the chemical pressure effect. Neither reduction of TcT_{\textrm{c}} nor suppression of superconducting volume fraction is found below x∼x \sim 0.5. This demonstrates that the effect of disorder by substitution is negligible in the present system. With further increase of xx, both TcT_{\textrm{c}} and superconducting volume fraction start to decrease toward the values in xx = 1.Comment: J. Phys. Soc. Jp

    Transport criticality of the first-order Mott transition in a quasi-two-dimensional organic conductor, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl

    Full text link
    An organic Mott insulator, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl, was investigated by resistance measurements under continuously controllable He gas pressure. The first-order Mott transition was demonstrated by observation of clear jump in the resistance variation against pressure. Its critical endpoint at 38 K is featured by vanishing of the resistive jump and critical divergence in pressure derivative of resistance, ∣1R∂R∂P∣|\frac{1}{R}\frac{\partial R}{\partial P}|, which are consistent with the prediction of the dynamical mean field theory and have phenomenological correspondence with the liquid-gas transition. The present results provide the experimental basis for physics of the Mott transition criticality.Comment: 4 pages, 5 figure

    Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran

    Get PDF
    To evaluate satellite rainfall estimates of Tropical Rain Measurement Mission (TRMM) level 3 output (3B42) (TRMM_3B42) over Iran (20&deg;–45&deg; N, 40&deg;–65&deg; E), we compared these data with high-resolution gridded precipitation datasets (0.25&deg;&times;0.25&deg; latitude/longitude) based on rain gauges (Iran Synoptic gauges Version 0902 (IS0902)). Spatial distribution of mean annual and mean seasonal rainfall in both IS0902 and TRMM_3B42 from 1998 to 2006 shows two main rainfall patterns along the Caspian Sea and over the Zagros Mountains. Scatter plots of annual average rainfall from IS0902 versus TRMM_3B42 for each 0.25&deg;&times;0.25&deg; grid cell over the entire country (25&deg;–40&deg; N, 45&deg;–60&deg; E), along the Caspian Sea (35&deg;–40&deg; N, 48&deg;–56&deg; E), and over the Zagros Mountains (28&deg;–37&deg; N, 46&deg;–55&deg; E) were derived. For the entire country, the Caspian Sea region, and the Zagros Mountains, TRMM_3B42 underestimates mean annual precipitation by 0.17, 0.39, and 0.15 mm day<sup>&minus;1</sup>, respectively, and the mean annual rainfall spatial correlation coefficients are 0.77, 0.57, and 0.75, respectively. The mean annual precipitation temporal correlation coefficient for IS0902 and TRMM_3B42 is ~0.8 in the area along the Zagros Mountains, and ~0.6 in the Caspian Sea and desert regions
    • …
    corecore